An Overview of OSI Conformance Testing

Jan Tretmans
Formal Methods & Tools group
University of T'wente

January 25, 2001

1 Introduction

The development of distributed systems, in which the computer functionality, such as
processing functions, information storage, and human interaction, is distributed over
different computer systems, raises the need for exchanging information between these
systems. To have computer systems communicate successfully, the communication must
occur according to well-defined rules. A protocol describes the rules with which computer
systems have to comply in their communication with other computer systems. A protocol
entity is that part of a computer system that takes care of the local responsibilities in
communicating according to the protocol.

To have successful communication among computer systems, also from different manufac-
turers, many protocols are not developed in isolation, but within groups of manufacturers
and users, with the aim of standardizing such protocols. This has led for instance to the
development of the OSI Reference Model for Open Systems [ISO84], which serves as a
framework for a set of standards that enable computer systems to communicate. How-
ever, to assure successful communication it is not sufficient to specify and standardize
communication protocols. Implementations of these protocol standards are required for
which it must be ascertained that these implementations really behave according to these
standards protocol specifications, i.e., conform to these standards. One way to do this
is by testing these protocol implementations. This activity is known as protocol confor-
mance testing.

This note gives an introduction into some of the important concepts of protocol con-
formance testing. It is largely based on the standard ISO 9646: “Conformance Testing
Methodology and Framework” [ISO91]. This standard was originally developed to give
a framework and define common terminology for testing of OSI systems. Although OSI
protocols themselves are not often used anymore the concepts for testing their imple-
mentations have a broader applicability and can, and actually are, also used in testing
of other kinds of protocol systems.

This note starts with a discussion of what conformance testing is, after which the main
phases and aspects of conformance testing according to [ISO91] are presented.

2 Conformance Testing

Testing is the process of trying to find errors in a system implementation by means of
experimentation. The experimentation is usually carried out in a special environment,
where normal and exceptional use is simulated. The aim of testing is to gain confidence
that during normal use the system will work satisfactory: since testing of realistic systems
can never be exhaustive, because systems can only be tested during a restricted period
of time, testing cannot ensure complete correctness of an implementation. It can only
show the presence of errors, not their absence.

Protocol conformance testing is a kind of testing where an implementation of a protocol
entity is tested with respect to its specification. The aim is to gain confidence in the
correct functioning of the implementation with respect to a given specification, and
hence to improve the probability that the protocol implementation will communicate
successfully with peer protocol entities.

To conduct testing, experiments, or tests must be systematically devised. These tests are
applied to an implementation, and the test outcomes are compared with the expected or
calculated outcomes. Based on the results of the comparison a verdict can be formulated
about the correctness of the implementation, which, if negative, can be used for improving
the implementation.

In testing, in particular in software testing (see e.g., [Mye79, Whi87]), a distinction is
made between functional testing and structural testing. Structural testing, also referred
to as white-box testing, is based on the internal structure of a computer program. The
aim is to exercise thoroughly the program code, e.g., by executing each statement at least
once, or by trying to execute all paths through the program code taking into account
decisions, branches, loops, etc. Tests are derived from the program code. Structural
testing is most used in the early stages of program development. With functional testing
the emphasis is on testing the externally observed functionality of a program based on its
specification. Functional testing is also called black-box testing: a system is treated as a
black box, whose functionality is checked by observing it, i.e., no reference is made to the
internal structure of the program. The main goal is to determine whether the right (with
respect to the specification) product has been built. Functional tests are derived from
the specification. Consequently, the most important prerequisite is a precise, complete
and clear specification. Functional testing is usually concentrated in the later stages of
program development.

Protocol conformance testing is a kind of functional testing: an implementation of a
protocol entity is solely tested for conformance with respect to the requirements given in
its specification. The idea is that only systems with correctly implemented protocols can
communicate successfully with peer entities. Often the specification is (internationally)
standardized and then the goal is to certify the implementation with respect to the
standard. Only the observable behaviour of the protocol implementation is tested, i.e.,
the interactions of an implementation with its environment; no reference is made to
the internal structure of the protocol implementation. e.g., memory consumption. In
practical conformance testing the internal structure of the entity is usually not even
accessible to the tester: the computer system in which the entity under test is located
need not be accessible, e.g., when testing is performed by an independent, accredited test
laboratory, that has no access to the implementation details of an implementation.

Conformance testing in the development trajectory Conformance testing is only
concerned with checking a protocol implementation, i.e., a software product (executing
code), with respect to its specification. This implies that a specification must be available
and, moreover, that the specification is correct and valid. Checking the correctness of a
specification is referred to as protocol validation. It involves checking that the specifica-
tion indeed prescribes the intended behaviour. For testing, validity of the specification is
assumed; it is not the topic of conformance testing: if the specification contains a design
error then, if the conformance testing process is correctly performed, each conforming
implementation will have the same error.

Other kinds of protocol testing Since in practice it turns out that functional testing
of an implementation in isolation, i.e., conformance testing, does not guarantee successful
communication between systems, products are also tested in a realistic environment, for
example in a model of a communication network. In this kind of testing the interac-
tion with other computer systems can be examined in more detail. It is referred to as
interoperability testing.

Apart from testing the functional behaviour of a protocol implementation, other kinds
of testing test other aspects of a protocol, e.g., performance testing to measure the
performance characteristics of an implementation, robustness testing to examine the im-
plementation’s behaviour in an erroneously behaving environment, and reliability testing
to check whether the implementation continues to work correctly during a certain period
of time.

Parties involved Conformance testing can be performed by different parties. First,
the implementer or supplier of a product tests its product before selling it. Users of
products, or their representative organizations, test products for their correct function-
ing. Telecommunications administrations check products before connecting them to their
networks to prevent malfunctioning of a network caused by incorrectly implemented prod-
ucts. Finally, independent third party test laboratories can perform conformance tests
for any of the previously mentioned parties. A system of accreditation allows testing lab-
oratories to certify implementations that they have tested and judged to be conforming.
Certification by accredited testing laboratories makes repeated testing by supplier, buyer,
and network owner superfluous. Also repetition of tests by different network operators
in different countries is not necessary if we can rely on testing having been performed
according to well-defined procedures and standards.

Standardization of conformance testing If implementations of the same (interna-
tionally) standardized protocol are tested it should not occur that different test labo-
ratories decide differently about conformance of the same implementation. Ideally, it
should not be necessary that the same product is tested more than once by different
testing laboratories. This is possible if testing is based on generally accepted principles,
using generally accepted tests, and leading to generally accepted test results. To achieve
this the International Organization for Standardization (ISO), together with the CCITT
(now ITU-T), has developed a standard for conformance testing of Open Systems. This
is the standard ISO IS-9646: “OSI Conformance Testing Methodology and Framework”
[ISO91].

The purpose of this standard is ‘to define the methodology, to provide a framework for
specifying conformance test suites, and to define the procedures to be followed during

testing’, leading to ‘comparability and wide acceptance of test results produced by differ-
ent test laboratories, and thereby minimizing the need for repeated conformance testing
of the same system’ [ISO91, part 1, Introduction]. The standard does not specify tests
for specific protocols, but it defines a framework in which such tests should be devel-
oped, and it gives directions for the execution of such tests. The standard recommends
that sets of tests, called test suites, be developed and standardized for all standardized
protocols.

3 Overview of IS-9646

The current practice of protocol conformance testing is based on the standard ISO IS-
9646, “OSI Conformance Testing Methodology and Framework” [ISO91, Ray87]. This
standard defines a methodology and framework for protocol conformance testing assum-
ing that protocols are specified using a natural language. It was originally developed for
OSI protocols, but it is also used for testing other kinds protocols, e.g., ISDN and ATM
protocols. The standard consists of five parts, each defining an aspect of conformance
testing:

o part 1 is an introduction and deals with the general concepts;
o part 2 describes the process of abstract test suite specification;
o part 3 defines the test notation TTCN;

o part 4 deals with the execution of tests;

o part 5 describes the requirements on test laboratories and their clients during the
conformance assessment process.

An overview of 1S-9646 is given with most attention devoted to parts 1 and 2, i.e., to the
generation and specification of test suites.

3.1 The Conformance Testing Process

In the process of conformance testing three phases are distinguished [ISO91, Part 1,
Section 1.3]. They are depicted in Figure 1, together with the activity of protocol imple-
mentation. The first phase is the specification of an abstract test suite for a particular
(OSI) protocol. We refer to it by test generation or test derivation. This test suite is
abstract in the sense that tests are developed independently of any implementation. It is
intended that abstract test suites of standardized protocols are standardized themselves.
The second phase consists of the realization of the means of executing specific test suites.
It is referred to as test implementation. The abstract test cases of the abstract test suite
are transformed into executable tests that can be executed or interpreted on a real testing
device or test system. The peculiarities of the testing environment and the implemen-
tation, which during testing is called JUT (Implementation Under Test), are taken into
account. The last phase is the test execution The implemented test cases are executed
with a particular IUT and the resulting behaviour of the IUT is observed. This leads to
the assignment of a verdict about conformance of the IUT with respect to the standard
protocol specification. The results of the test execution are documented in the protocol
conformance test report (PCTR).

In the next subsections these phases are described in more detail. This leads to a more

/

/ conformance testing

rocess of
standard P

protocol
specification

implementation
process

test generation

protocol / standard
implementation / conformance
T test suite

test
implementation

test execution

/ verdict

Figure 1: Global overview of the conformance testing process.

detailed view of the conformance testing process given in Figure 2.

3.2 A Conforming Implementation

Before an implementation can be tested for conformance it must be defined what con-
formance is: What does it mean that an implementation conforms to its specification?
The definition of what constitutes a conforming implementation determines what should
be tested. IS-9646 states that a system ‘exhibits conformance if it complies with the
conformance requirements of the applicable ...standard’ [ISO91, Part 1, Section 5.1].
This means that a correct implementation is one which satisfies all conformance require-
ments, and that these conformance requirements must be mentioned explicitly in the
protocol standard. Conformance requirements express what a conforming implementa-
tion shall do (positively specified requirements), and what it shall not do (negatively
specified requirements).

A complication arises by the fact that a protocol standard does not uniquely specify one
protocol, but a class of protocols. Most standards leave open a lot of options, which
may or may not be implemented in a particular protocol implementation, but which, if
implemented, must be implemented correctly. An implementer selects a set of options for
implementation. All implemented options of a specific protocol implementation are listed
by the implementer in the PICS, the Protocol Implementation Conformance Statement,
so that the tester knows which options have to be tested. To assist in producing the
PICS a PICS proforma is attached to the protocol standard. This is a questionnaire in
which all possibilities for the selection of options are enumerated.

Restrictions on the selection of options are given in the static conformance requirements
of a standard. They define requirements on the minimum capabilities that an implemen-
tation shall provide, and on the combination and consistency of different options.

Example 3.1

In the ISO/OSI Transport Protocol [ISO86] five classes (0 .. 4) are distinguished. In
a particular implementation not all classes need be implemented. However, the choice
is not completely free, e.g., if class 4 is implemented also class 2 must be implemented.
Such a restriction is recorded in the protocol standard as part of the static conformance
requirements. In the PICS the implemented classes of a particular implementation are

documented.
O

The main part of a protocol standard consists of dynamic conformance requirements.
They define requirements on the observable behaviour of implementations in the com-
munication with their environment. They concern the allowed orderings of observable
events, such as sending and receiving of PDUs (protocol data units) and ASPs (abstract
service primitives), the coding of information in the PDUs, and the relation between
information content of different PDUs.

Example 3.2

A dynamic conformance requirement of the ISO/OSI Transport Protocol is the require-
ment that after receiving a T-PDU-connect-request from the peer entity either the user of
the Transport entity is notified by means of a T-SP-connect-indication service-primitive,

or a T-PDU-disconnect-request is sent to the peer entity. -

Summarizing, the definition of a conforming implementation is [ISO91, Part 1, Sections

standard
protocol
specification
dynamic test
conformance |-~ - -------= purposes
;) requirements :
implementation __ | v
process static generic
: conformance |- -1 test suite
\ requirements : :
: ! : standardized
| I PICS : | Itest methods
:) proforma : : I
| | | | | test
I I | | I notation
| | |
| | | y v
: : ! standardized
| | : abstract
| | X test suite
| |
¥ | : basic interconnection
! | capability
) protocol) : I behaviour
implementation | | ;
IUT | : |
| | |
5 | y
pics o\ [
| | _ [test selection
| | |
I | I
! |
PIXIT B :
! I
K ! |
t T ! |
| | ! |
I I ! static |
' [t- conformance j<- - - [
: : review "(
|
PIXIT !
proforma | executable
| test suite
! basic interconnection
capability
behaviour

analysis
of results

test report
verdict
T

Vi

certification

Figure 2: Detailed overview of the conformance testing process.

3.4.10 and 5.6]:

‘A conforming implementation is one which satisfies both static and dy-
namic conformance requirements, consistent with the capabilities stated in
the PICS.’

Conformance testing consists of checking whether an TUT satisfies all static and dynamic
conformance requirements. For the static conformance requirements this means a re-
viewing process of the PICS delivered with the IUT. This is referred to as the static
conformance review. For the dynamic conformance requirements this means running a
number of tests against the IUT. The specification of one test is referred to as a test case.
A test suite is a complete set of test cases, i.e., a set that tests all dynamic conformance
requirements.

3.3 Test Generation

The first phase of the conformance testing process is test generation. It consists of sys-
tematically deriving test cases from a protocol specification. The goal is to develop an
abstract test suite, i.e., a specification of a test suite that is implementation indepen-
dent, specified in a well-defined test notation language, suitable for standardization, and
testing all aspects of the protocol in sufficient detail. Since the relevance of a protocol
specification with respect to conformance testing is its set of conformance requirements,
and since the static conformance requirements are checked by reviewing the PICS, this
means that the set of the dynamic conformance requirements in a protocol standard is
the starting point for test generation.

Test cases are derived systematically from the dynamic conformance requirements in a
multi-step procedure. In the first step, one or more test purposes are derived for each
conformance requirement. A test purpose is a precise description of what is going to be
tested in order to decide about the satisfaction of a particular conformance requirement.
As the next step it is recommended to derive a generic test case for each test purpose. A
generic test case is an operationalization of a test purpose, in which the actions necessary
to achieve the test purpose are described on a high level, without considering a test
method or the environment in which the actual testing will be done. The last step is the
derivation of an abstract test case for each generic test case. In this step a choice is made
for a particular test method, and the restrictions implied by the environment in which
testing will be carried out are taken into account.

Test methods

A protocol standard specifies the behaviour of a protocol entity at the upper and lower
access points of the protocol ((N)-SAP en (N-1)-SAP). Hence the ideal points to test
the entity are these SAPs. However, these SAPs are not always directly accessible to
the tester. The points where the tester controls and observes the IUT are called the
Points of Control and Observation (PCO). PCOs may, but need not coincide with the
boundaries of the IUT. Normally in protocol conformance testing there are two PCOs,
one corresponding with the upper access point of the IUT, and one with the lower access
point. A similar conceptual separation is made for the tester. The part of the tester that
controls and observes the PCO connected to the upper access point is called the Upper

Tester (UT). The part that controls and observes the PCO connected to the lower access
point is called the Lower Tester (LT).

A test method defines a model for the accessibility of the TUT to the tester in terms
of PCOs and their place within the OSI reference model [ISO84]. Aspects that can be
distinguished are:

o existence of PCOs: if one of the access points is not accessible at all there is no
PCO for that access point;

o whether there are other protocol layers between the PCO and the access point, and
the kind of events that are communicated (ASPs or PDUs);

o the positioning of the PCOs in the same computer system as the IUT, called the
System Under Test (SUT);

o the internal functioning of the tester in terms of the distribution of testing functions
over LT and UT, and the rules that define their coordination: the test coordination
procedures.

By varying these aspects different test methods are obtained. Some have been identified
and standardized in IS-9646 [ISO91, Part 2, Section 12] for use in standardized abstract
test suites. The basic configuration is Local Single-layer test method (LS-method), see
Figure 3. In all standardized test methods the lower access point of the IUT is always
accessible, usually via an underlying service; the upper access point may be hidden.
Standardized test methods, apart from the LS-method, are the Distributed Single-layer
test method (DS-method), the Coordinated Single-layer test method (CS-method), and
the Remote Single-layer test method (RS-method). As another example, Figure 4 shows
the DS-method. There are two PCOs. An example of a test method with one PCO is
the RS-method: in the RS-method there is no upper tester.

A standardized abstract test suite refers to a particular test method, choosing the most
appropriate one.

The four test methods that were mentioned can be used in variations where the TUT
consists of more than one subsequent protocol layers. These layers can be tested as
a whole (multi-layer testing), or one layer can be tested embedded in the other layers
(embedded testing). The test methods are LM, CM, DM and RM (Local Multi-layer,
etc.), and LSE, CSE, DSE and RSE (Local Single-layer Embedded, etc).

Test notation

Since abstract test suites are standardized, they must be specified in a test notation that
is well-defined, independent of any implementation, and generally accepted. I1S-9646
recommends the semi-formal language TTCN, the Tree and Tabular Combined Notation,
which is defined in [ISO91, part 3] and more recently in [ISO97]. (A major revision
leading to TTCN Version 3 is expected to appear soon [GH99)).

In TTCN the behaviour of test cases is specified by sequences of input and output events
that occur at the PCOs. A sequence can have different alternatives, where different
subsequent behaviours can be chosen, e.g., depending on output produced by the TUT,
the expiration of timers, or values of internal parameters of the tester. Successive events
are indicated by increasing the level of indentation, alternative events have the same
indentation. A sequence ends with the specification of the verdict that is assigned when
the execution of the sequence terminates. The verdicts in the different possible alternative

uT

—_—— . — — — — — — — —

PCO | (N)-ASPs

coordination

(N)-PDUs
PCO | (N°1)-ASPs

|
|
|
|
|
|
I
|
test : IUT
|
|
|
|
|
|
|
|
|

U
LT
L o -
Figure 3: The local test method.
test SUT
system
test
coordination ut
LT

PCO | (N)-ASPs

<— (N)-PDUs —=

T
PCO | (N-1)-ASPs

service provider

Figure 4: The distributed test method.

10

behaviours differ. Some alternatives will describe correct behaviour, ending with the
positive verdict pass, while other alternatives describe erroneous behaviour, ending with
the negative verdict fail. The verdict inconclusive indicates correct but not intended
behaviour, see Section 3.5.

TTCN is defined in such a way that automatic execution is feasible. A simplified example
of a TTCN behaviour is presented in Figure 5. More about TTCN, apart from the
defining standard, can be found in [PM92].

Test Case Dynamic Behaviour
Test Case Name: Conn_Estab

Group: transport/connection

Purpose: Check connection establishment with remote initiative
behaviour constraints | verdict
+ preamble

LT ! T-PDU-connect-request
UT ? T-SP-connect-indication
UT ! T-SP-connect-response

LT ? T-PDU-connect-confirm pass
OTHERWISE fail
LT ? T-PDU-disconnect-request inconclusive
OTHERWISE fail

Figure 5: A simplified TTCN example.

Classification of tests

Tests can be classified according to the extent to which they give an indication of con-
formance. The following distinction is made:

o basic interconnection tests
o capability tests
o behaviour tests

o conformance resolution tests

The classification is applicable to generic, abstract and the executable tests, which will
be discussed in Section 3.4.

Basic interconnection tests are used to guarantee a basic level of interconnection between
the tester and the IUT. Their main purpose is economical: before an expensive test
environment is developed first some basic functions of the TUT are checked, e.g., the
establishment of a connection between the tester and the TUT.

Capability tests serve to verify the compliance between the implemented options and the
options stated in the PICS.

Behaviour tests constitute the main part of a test suite. They test the dynamic confor-
mance requirements of a protocol standard in full detail within the limits of technical
and economical feasibility. They are the basis for the final verdict about conformance.

Conformance resolution tests do not belong to the actual conformance tests. They form
supplementary tests that can be used to do extra testing if problems are encountered, or
to trace errors. These tests have a heuristic nature, they are not standardized, and they

11

cannot be used as a basis for the final verdict.

Hierarchical structuring of tests

A test suite is a complete set of tests for conformance testing of a particular protocol.
Elements of a test suite are tests, or test cases. A test case specifies one experiment,
related to one test purpose and to one conformance requirement. Related test cases can
be grouped into test groups with corresponding test group objective. Grouping can occur
at different levels.

Within a test case test steps and test events can be distinguished. A test event is one
interaction at a PCO, e.g., sending or receiving one PDU. A test step groups successive
test events. An example of a test step is a preamble: a sequence of events that brings
the IUT in a state from which the body of the test case that tests the test purpose can
be tested. Analogously the postamble test step brings the IUT back to a specified state,
e.g., the initial state, after the main part of a test case has been executed.

The hierarchical structuring is applicable to all levels of test cases. Also conformance
requirements and test purposes can be grouped.

3.4 Test Implementation

Starting point for test implementation is the (standardized) abstract test suite. The
abstract test suite is specified independently of any real testing device. In the test
implementation phase it is transformed into an ezecutable test suite, i.e., a test suite
which can be run on a specific testing device with a specific IUT.

Before starting to implement, a selection from the abstract test suite must be made. The
abstract test suite contains all possible tests for a particular protocol, for all possible
options. It does not make sense to test for options that are not implemented according
to the PICS. Therefore the tests relevant to the IUT are selected based on the PICS. In
1S-9646 this is called test selection?.

The PICS contains protocol dependent information. To derive executable tests this is
insufficient; also information about the IUT and its environment must be supplied. Such
information is called PIXIT (Protocol Implementation eXtra Information for Testing).
The PIXIT may contain address information of the IUT, or parameter and timer values
which are necessary to implement the test suite. The PIXIT, like the PICS, is supplied
by the supplier of the IUT to the testing laboratory. To guide production of the PIXIT
the testing laboratory provides a PIXIT proforma.

The selected and implemented test cases with parameter values according to the PIXIT
form the executable test suite, which can be executed on a real tester or test system.
During implementation care must be taken that the tests are implemented correctly,
according to the semantics of the test notation used for the specification of the abstract
test suite.

INote that the notion of ‘test selection’ is sometimes used in a different way, viz. as selecting from
an (infinite) set of possible (automatically generated) test cases.

12

3.5 Test Execution

During the test execution phase a specific IUT is actually tested leading to a verdict
about conformance of the IUT. The first step consists of the static conformance review:
the PICS of the TUT is checked for internal consistency and compared with the static
conformance requirements of the standard. The second step consists of executing the
executable test cases on a real tester. The reactions of the IUT are observed and compared
with the reactions specified in the test case. For each test case a verdict is assigned. The
verdict is either pass, fail, or inconclusive. Pass indicates that the test was executed
successfully, and that the goal expressed in the corresponding test purpose was achieved.
Fail indicates that the implementation does not conform to the specification. Inconclusive
indicates that no evidence of non-conformance was found, but that the test purpose was
not achieved.

Example 3.3

Suppose the test purpose in the TTCN example in Figure 5 is to check the correct
connection establishment of the Transport Protocol, by testing the sequence of actions T-
PDU-connect-request, T-SP-connect-indication, T-SP-connect-response, T-PDU-connect-
confirm. If the IUT reacts with T-PDU-disconnect-request after having received T-PDU-
connect-request, the verdict inconclusive is assigned: this behaviour is allowed according
to the Transport standard, but the the verdict pass cannot be assigned since the test

purpose was not achieved. -

Finally, the results of the static conformance review and the verdicts of all test cases
are combined, leading to a verdict about conformance of the IUT with respect to the
protocol specification. Normally the final verdict is pass if and only if no individual test
resulted in the verdict fail. All results, including the final verdict, are documented in the
PCTR (Protocol Conformance Test Report).

Acknowledgements

Jeroen van de Lagemaat (University of Twente) is acknowledged for contributing to the
original, Dutch version of this paper [TL91].

References

[GH99] J. Grabowski and D. Hogrefe. Towards the Third Edition of TTCN. In
G. Csopaki, S. Dibuz, and K. Tarnay, editors, Int. Workshop on Testing of
Communicating Systems 12, pages 19-29. Kluwer Academic Publishers, 1999.

[ISO84] ISO. Information Processing Systems, Open Systems Interconnection, Basic
Reference Model. International Standard IS-7498. ISO, Geneve, 1984.

[ISO86] ISO. Information Processing Systems, Open Systems Interconnection, Connec-
tion Oriented Transport Protocol Specification. International Standard IS-8073.
ISO, 1986.

[ISO91] ISO. Information Technology, Open Systems Interconnection, Conformance
Testing Methodology and Framework. International Standard IS-9646. ISO, Gen-
eve, 1991. Also: CCITT X.290-X.294.

13

[ISO97] ISO/IEC. Information Technology — Open Systems Interconnection — Con-
formance Testing Methodology and Framework — Part 8: The Tree and Tab-
ular Combined Notation (TTCN). International Standard ISO/IEC 9646-3.
ISO/IEC, Geneve, 1997. Second Edition.

[Mye79] G.J. Myers. The Art of Software Testing. John Wiley & Sons Inc., 1979.

[PM92] R.L. Probert and O. Monkewich. TTCN: The international notation for specify-
ing tests for communications systems. Computer Networks and ISDN Systems,
23(5):417-438, 1992.

[Ray87] D. Rayner. OSI conformance testing. Computer Networks and ISDN Systems,
14:79-98, 1987.

[TLI1] J. Tretmans and J. van de Lagemaat. Handboek Telematica, volume II, chapter
Conformance Testen, pages 4400 1-19. Samson, 1991. In Dutch. Also: Memo-
randum INF-90-86, University of Twente, The Netherlands.

[Whi87] L. J. White. Software Testing and Verification, volume 26 of Advances in Com-
puters. Academic Press, 1987.

14

